
Installing and Configuring Big Sister

Thomas Aeby

27th January 2003

Abstract

Many Big Sister users keep complaining about the bad documentation. Unfortu-
nately they are right. This manual is a trial for making things better and is intended
for accompanying Big Sister users during their first steps getting it up and running.

Contents

1 Installation 1
1.1 Pre-requisits . 1
1.2 Big Sister Components . 2
1.3 Paths . 3
1.4 Installing Big Sister . 4

1.4.1 Installation from source 4
1.5 Installing Windows binary . 6
1.6 Post-installation tasks . 7

1.6.1 Installing Perl modules 7
1.6.2 Installing RRDTool . 8
1.6.3 Installing CGIs . 8
1.6.4 Web Server . 9

2 Configuration 10
2.1 First steps . 10
2.2 Basic Configuration . 11

2.2.1 Daemon startup . 11
2.2.2 Agent configuration . 12
2.2.3 Display server configuration 18
2.2.4 Configuring alarming . 28

2.3 Advanced Configuration . 34
2.3.1 Server security . 34
2.3.2 Dynamic grouping . 38
2.3.3 Graphical status displays 38
2.3.4 Monitor modules . 38
2.3.5 Performance data collection 38
2.3.6 Interlinking multiple Big Sister servers 38
2.3.7 SNMP support . 38
2.3.8 SLA / Availability Reporting 38

i

Chapter 1

Installation

1.1 Pre-requisits

The first step in getting a working installation of Big Sister is to download the
source package or one of the binary release packages from

http://bigsister.graeff.com/download/

At the time this manual was written there was a choice between

• the source package

• Big Sister pre-installed for Windows systems (zip archive containing non-
compiled but otherwise ready-to-use Big Sister installation, ActivePerl in-
terpreter needed)

• Big Sister binary for Windows (zip archive containing compiled Big Sister
executable without a Perl interpreter)

By the time you read this manual other packages - namely RPMs for Linux systems
- may be available. Please check the download page and select what suits your
needs best.

1

Big Sister 2

monitored system

monitored system

agent (uxmon)

monitored system

monitored system

agent (uxmon)

status update

local monitor

network monitor

network monitor

Server

Monitor
Alarming
Web pages

Logs
...

bbd
...

Figure 1.1: Big Sister Components

Depending on what package you downloaded and what features you want to use
you will need additional software, e.g. a Perl interpreter, specific Perl modules, etc.
All these extra-software is listed in the chapter describing the installation process
in your specific case.

1.2 Big Sister Components

Big Sister is composed of a few components usually being hosted on different sys-
tems (see figure 1.1). An ordinary Big Sister environment will contain one Server
running the Big Sister Server (bbd) and the Big Sister Monitor (bsmon). Bbd is

Big Sister 3

responsible for the communication with the agents including checks if agents are
permitted to do certain operations.Bbd then passes all the information it gets from
the agents to thebsmon as is.Bsmonprocesses this information and builds status
pages, does alarming, etc. Complex environments may contain multiple interlinked
servers.

Every monitored system or service is monitored by a Big Sister Agent (uxmon).
Some tests the agent performs are only applicable to the system hosting the agent
while others work via the network. Usually you will install agents on all the sys-
tems you want to monitor provided there is an agent implementation working on
the respective system available. You can monitor systems like switches, routers,
etc. not running an agent via network (e.g. via SNMP). Only a limitted set of checks
works via network though.

It is possible to use the Big Brother agent as a replacement for the Big Sister agent
(e.g. for Netware). However, some features of Big Sister (e.g. performance data
collection) will not be available in this case.

1.3 Paths

Big Sister puts its binaries and data in specific directories. Depending on your
installation the paths pointing to this directories will differ. If you build Big Sister
from source you are free to move most of these directories to the location you
prefer. The Windows packages allow you to relocate the whole Big Sister package
(theRoot directory) but not each of the directories with special meanings.

What Default Windows RPM
Root /usr/local/... C:\bigsis /usr/lib/bigsis

.../lib/bs
Binaries {Root}/bin {Root}\bin {Root}/bin
Agent Bin. {Root}/uxmon {Root}\bin {Root}/uxmon
Web Pages {Root}/www {Root}\www /var/lib/...

.../bigsis/www
RW-Files {Root}/var {Root}\var /var/lib/...

bigsis/var
local conf. {Root}/adm {Root}\adm {Root}/adm
shared conf. {Root}/etc {Root}\etc {Root}/etc
CGI-URL /cgi/ /cgi/ /cgi/

Big Sister 4

TheCGI-URL is not a physical path - it is rather the path where Big Sister expects
its CGI programs to appear when accessed from outside world via the web server.

1.4 Installing Big Sister

1.4.1 Installation from source

When installing Big Sister from the source package you will need at least a working
copy of themake utility, the Bourne shell, and a working Perl interpreter. This
means that you will probably not be able to install Big Sister from source directly
on a Windows machine and this section therefore just assumes you are installing
on a Unix box.

Before you can proceed you should decide where to store your various Big Sister
files (see section 1.3). If this is your first installation it might be a good idea to just
use the defaults. You should consider a few points:

• The Web-Pages directory must be accessible via a web browser, probably
you will run a web server for this purpose

• Other directories than the Web-Pages directory should not be accessible via
a web server for security reasons

• Big Sister will excessively write to the Web-Pages and var directories. They
should be located on a fast disk.

• Config files are split into two directories: the adm- and etc- directory. The
idea behind is to keep files shared (e.g. via software distribution) between
different installations in etc and the files local to the respective machine in
the adm directory.

Usually you will install Big Sister under its own user account (default:bs) for
security reasons. Big Sister daemons will run under this account. Before you can
install Big Sister you have to create this account.

Big Sister 5

You are still with us? Well, then we can start installation. Provided you have already
unpacked your Big Sister package, you are logged in as root and you changed
directory into your package directory a simple

make install

should do the trick. However, this will use the defaults for all the installation op-
tions. To install with non-default options you execute something like

make install OPTION1=arg1 OPTION2=arg2 ...

Valid options are:

DEST - the root directory (defaults to/usr/local/lib/bs)

EXEC - the path where the root directory can be found when Big Sister is running
(useful e.g. when installing in a first directory, let’s say /tmp/bigsister on
your test system, then copy all the files over to /usr/local/lib/bs of your pro-
duction system, in this case you would chooseDEST=/tmp/bigsister
EXEC=/usr/local/lib/bs). This defaults to the same as theDEST
option and setting this will only be useful in rare cases.

USER - The name of the user Big Sister will be installed (defaults tobs)

CGIPATH - Big Sister comes with a few CGI programs to be run by the web
server.CGIPATHis the root URL of the CGI directory where these programs
will be stored.

WEBROOT - The directory{DEST}/www will be the location where Big Sister
stores its web pages. This directory must be accessible via a web browser
(usually via a web server). TheWEBROOToption must contain the URL
under which this directory is accessible. This defaults to/ .

PERL - The path to your perl interpreter. By defaultmake will look it up in your
program path. You will have to use thePERLoption if theperl command
is not in your path.

INCLUDE - the root path under which Big Sister will find its own perl modules.
This defaults to the same asDESTand I cannot imagine a situation where
you would choose something different.

Big Sister 6

So if you would like to install Big Sister in/usr/lib/bigsis , run it un-
der the accountbigsis , you have configured your web server to display Big
Sister pages underhttp://myhost/bigsis/ and make CGIs accessible via
http://myhost/bigsis/cgi then the command you invoke is

make install DEST=/usr/lib/bigsis USER=bigsis \
WEBROOT=/bigsis CGIPATH=/bigsis/cgi

1.5 Installing Windows binary

Before you can install Big Sister on a Windows system you need the util-
ities InstSrv.exe and SrvAny.exe . These two utilities are part of the
NT Resource Kit. Microsoft’s license restricts us from distributing the tools
with Big Sister. Anyway, if you do not have a copy of the Resource Kit you
will probably be able to find them via Altavista (search for “inststrv.exe” on
http://www.altavista.com/).

Once you successfully located your copy ofInstSrv andSrvAny you can place
them somewhere in the path, e.g. in yoursystem32 directory in your Windows
directory.

You are now ready for unpacking the zip archive. Place the resultingbigsister
directory wherever you like and then double click thebin/install32.exe
executable. The tasks performed by install32 are:

• register Big Sister in the registry (install path)

• register Big Sister services in the Service Manager

Now start the Service Manager and decide which services your Windows box
should start on boot. Three Big Sister services are registered: The agentuxmon,
the display serverbbd and the monitorbsmon. The server must run at leastbbd
andbsmon, while on agent systems only the agent is needed. Do not be irritated by
the strange names listed in the service manager - during the next reboot Windows
will adjust them.

Big Sister 7

1.6 Post-installation tasks

For various reasons you might have to change some of the configurations the in-
stallation procedure made - e.g. because you have installed from a binary package.
Also it might be necessary to install additional software to enable some Big Sister
features.

1.6.1 Installing Perl modules

Note: This section only applies if you have installed Perl on your machines running
Big Sister. If you are using the binary Windows package you already got all the
necessary Perl modules implicitly.

The following Perl modules are necessary to enable certain functionality:

SNMP - All the SNMP functionality in the agent and the server bases on Simon
Leinen’s SNMP module available from

http://www.switch.ch/misc/leinen/snmp/perl/

GD - Big Sister can present system status overviews as a graphical image map.
This functionality bases on the GD module available from CPAN (install it
on the server system).

Net::SMTP - Alarming is usually done via E-Mail and thesendmail program.
If you prefer your Big Sister server to directly transmit alarm mails via
SMTP - e.g. because you are running Big Sister on a non-Unix system - you
will have to install the Net::SMTP module available from CPAN on your
server system.

LWP::UserAgent - Web server checking can be done via a simple TCP monitor
(http test) or via a HTTP-aware monitor (realhttp) providing some ad-
ditional information on the tested web server. In the latter case you will have
to install the LWP::UserAgent module on the agent system(s).

You will find a list of CPAN mirrors on

Big Sister 8

http://www.cpan.org/

All of the above modules - except for the GD module - are easy to install. Just
follow the instructions in the respective module.

Note: For Linux systems many modules are available via RPM packages from your
distributor. ActiveState Perl (Windows) comes with its own easy way of installing
modules (seehttp://www.activestate.com/).

1.6.2 Installing RRDTool

Big Sister is able to collect performance data, store it in a database and provide
you with nice trend graphics. Currently only one database exactly designed for
such purposes is supported: Tobi Oetiker’s RRDTool. For this feature to work you
will have to download and install RRDTool. At the time this manual was written
it was not necessary to install the RRDTool perl modules - having therrdtool
command installed in your path was enough. Anyway it is a good idea to install
these modules. In near future they might improve performance of your server.

RRDTool is available from

http://ee-staff.ethz.ch/~oetiker/webtools/rrdtool/

1.6.3 Installing CGIs

Big Sister’s CGI scripts are installed in itsbin -directory. For security reasons it is
not a good idea to just configure your web server to use this directory as a CGI-
directory. It is better to either copy the relevant programs over or place symbolic
links to them into your CGI directory.

The CGI scripts are:

• bshistory

• bswebalarm

Big Sister 9

• bswebadmin

• bsgraph

Moving CGIs after installation

During installation you have to point the installation routine to the URL your CGIs
will be accessible through. If you installed a binary package you even have no
choice at all and Big Sister assumes CGIs are accessible via/cgi .

If this does not correspond with your web server configuration any more you will
have to edit the files...www/skins/default/*_PATH.inc where Big Sis-
ter stores some paths. In order to activate your changes you then remove the file
...www/skins/default/cache .

1.6.4 Web Server

The Big Sister installation routine will not touch your web server configuration in
any way. It relies on your web server to be configured in order to:

• make the documents in the.../www directory

• execute the CGI scripts (see 1.6.3) on demand

Chapter 2

Configuration

2.1 First steps

Are you curious? Just want to start it up and see what’s going on? Ok, let’s go.
There is one thing you have to do first: On all your agent systems you will have to
edit theadm/uxmon-net file locate the line

localhost bsdisplay

and replacelocalhost by the name of the system hosting your Big Sister server.
After that you can start the server by issueing

bin/bb_start start

(Unix) or start theBig Sister Server andBig Sister Monitor ser-
vices on Windows systems. The server should immediately start listening to the
agent/server port (TCP 1984) and create the initial web pages in thewwwdirectory.
Try starting a Web browser and point it to the newly generatedindex.html file.

Now you can proceed to bringing up agents. On Windows systems start theBig
Sister Agent service via theControl Panel / Service Manager , on
Unix systems remove the fileadm/bb-display.cfg andetc/bsmon.cfg
(only keep these files on the server) and use thebb_start command (see

10

Big Sister 11

above) for starting the Agent. You already have done the modification of
adm/uxmon-net , haven’t you?

Now go back to your web browser and reload the viewed pages. If you are using
thebb-display.cfg initially installed on the server the agents should automat-
ically appear on the status page (this may take one or two minutes).

Try the linksAdmin , Alarms andHistory to see if you got the CGI configura-
tion of your web server right.

2.2 Basic Configuration

2.2.1 Daemon startup

Under Windows use theControl Panel / Service Manager to tell your
system which Big Sister services it should startup on boot. See section 1.2 for
determining what services should run on which systems.

Under Unix the startup of Big Sister daemons is a little different. There is a shell
script namedbin/bb_start meant to work like a System V init script, thus
running

bin/bb_start start

will start up the Big Sister daemons while

bin/bb_start stop

will shut them down and

bin/bb_start restart

will restart Big Sister.

Therefore you can put a copy or a symbolic link tobb_start into your init direc-
tory (usually one of/etc/init.d , /etc/rc.d/init.d , /sbin/init.d)

Big Sister 12

and create the necessary links in yourrc*.d directories. If you are running Big
Sister on RedHat Linux you can use thechkconfig command to enable / disable
Big Sister.

bb_start will look at the config files in the Big Sister directory for deciding
which daemons it will start up. If there is one (or more)adm/uxmon-net files
present the agent will be started, if there is a file calledadm/uxmon-asroot
the agent will be started under theroot account (do this only if you know what
you are doing!), if a file calledadm/bb-display.cfg is presentbbd will start
up and finally ifetc/bsmon.cfg existsbsmon starts up. So if you want to use
your Big Sister instance as an agent only just removeadm/bb-display.cfg
andetc/bsmon.cfg .

2.2.2 Agent configuration

The agent (uxmon) will read its configuration from the fileadm/uxmon-net .
Under Unix multiple uxmon-net files may exist – their name must start
with adm/uxmon-net followed by an arbitrary suffix (note that e.g.
adm/uxmon-net.bak is a valid agent configuration file!).Bb_start will in
this case start up an instance ofuxmon for each of these configuration files.

The syntax of theuxmon-net file is kept very simple: each entry starts with the
name or IP address of a to-be-monitored system followed by a list of checks that
should be applied to this system, e.g.:

localhost type=ext2 diskfree

will run the diskfree test against all mounted partitions holding an ext2 file
system of the local system. As you can see most of the checks accept arguments.
Arguments are alwayspreceedingthe check and are of the form

argument1=value1 argument2=value2 ... check

The argument list only applies to the check immediately following the last argu-
ment in the list, thus

myhost proto=icmp ping ping

Big Sister 13

Agent

Big Brother server
server2

Big Sister server
server1

server1 bsdisplay server2 bbdisplay

Figure 2.1: Agent to Server

will run two ping checks against the hostmyhost , the first one will do an ICMP
ping, while the second will do a ping using the default protocol (usually UDP). The
proto argument does not influence the secondping check, but of course you can
do something (rather senseless) like

myhost proto=icmp ping proto=icmp ping

You will find a complete and hopefully up to date list of available checks with their
arguments in theCONFIGdocumentation coming with your Big Sister package.

uxmon-net entries may span multiple lines. Usually a line end will automatically
end the respective configuration entry. However if a line ends with a “\ ” character
the following line is assumed to be part of the entry.

Pointing the agent to your server

Two special pseudo-checks in theuxmon-net file point your agent to the
server(s) status reports should be sent to: thebsdisplay and bbdisplay
checks. The line

myserver bsdisplay

for instance will force the agent to send status information to the servermyserver

Big Sister 14

wheremyserver talks the Big Sister protocol. You can useuxmon in conjunction
with a Big Brother server by changing the above line into

myserver bbdisplay

In this case the agent will suppress any non-Big-Brother feature and use the Big
Brother protocol to talk to the server (see figure 2.1.

Of course multiplebsdisplay / bbdisplay lines may appear inuxmon-net .
In this case the agent will report its status information multiple times to (poten-
tially) different servers.

As one would expect thebsdisplay pseudo-check accepts a few arguments, e.g.
the line

myserver fqdn=no bsdisplay

will report status information tomyserver by stripping domains from all the host
names.

Other useful arguments are relevant if you want Big Sister to keep statistics on
performance data and are listed in section??.

Host aliases

Sometimes it is necessary to differ between the host you are running a check against
and the host name reported to the server. For instance imagine you are running a
check against a multihomed host (a host with multiple IP addresses) and you want
to access this target system via a well-defined network interface. In this case you
can use a configuration line like the following:

192.168.1.17(myhost) ping

This will run the ping test against192.168.1.17 . The result of the test however
is then reported to be related to the hostmyhost (see figure 2.2).

A host definition of the form

Big Sister 15

Agent
192.168.1.17(myhost) ping

Server

192.168.1.17

accessing
192.168.1.17

reporting
as myhost

Figure 2.2: Host Aliases

name1(name2)

is always treated byuxmon in the following way:name1 is used internally by the
checks whilename2 is the name reported to the Big Sister server. The server will
be completely unaware of theuxmon internal name (name1).

Check frequencies

By default uxmon runs checks and reports information in 5 minutes intervals. Any-
way, some checks might put some load on the target system, or are of no short-term
relevance and you prefer to run them less frequently. Other checks might be of
extreme importance and should be run more often. For such occasions you can
define your own check frequencies. Every check (including thebsdisplay and
bbdisplay pseudo-checks) accept the special argumentfrequency . E.g. the
uxmon-net line

localhost frequency=180 metastat
importantmachina frequency=1 ping

will run the metastat check against the local machine every 180 minutes while the
ping check is run every minute. Note that the argument namefrequency is a

Big Sister 16

little bit misleading – it is not really a frequency but rather the time interval in
minutes between two runs of a check.

When defining check frequencies keep some rules in mind:

• Running a check more often than the fastestbsdisplay pseudo-check is
senseless. Check results will only be reported duringbsdisplay runs,not
necessarily immediately after each check’s run. So the above example only
makes sense if you have got for instance the followinguxmon-net :

localhost frequency=180 metastat
importantmachina frequency=1 ping
myserver frequency=1 bsdisplay

• You must runbsdisplay checks at least every 10 minutes. The server
relies on the agents to report their status rather frequently. If no status in-
formation is coming in for 15 minutes the server will assume the agent or
communication to the agent is dead and will set status topurple (no re-
port).

• The above rule does not apply to other checks. Even if you run certain checks
only every few hours thebsdisplay check will report the result of the last
check run. So the server will not change status topurple .

Defaults

Proceeding to more complexuxmon-net files you will probably get bored by re-
peatedly list the same check arguments again and again. Fortunatelyuxmon sup-
ports setting defaults for certain arguments. For instance the configuration:

localhost frequency=2 type=ext2 diskfree
localhost frequency=2 memory
localhost frequency=2 procs=sendmail procs
fileserver frequency=5 nfs
myserver frequency=2 bsdisplay

Big Sister 17

can be simplified to

DEFAULT frequency=2 ALL
DEFAULT type=ext2 diskfree

localhost diskfree
localhost memory procs=sendmail procs
fileserver frequency=5 nfs
myserver bsdisplay

theDEFAULTstatements in this example do

• set the default check interval for all (ALL) the checks to 2 minutes

• set the default type for alldiskfree checks toext2

Of course you can override defaults by just listing an argument with a non-default
value as usual. For instance in the example above the interval for thenfs check is
explicitly set to 5 minutes overriding the default interval of 2 minutes.

Including files

As in every other configuration file you can include the contents of another file
using the include statement:

include uxmon.include

This line will causeuxmon to search theadm, etc and Big Sister root directory
(in this order) for a file calleduxmon.include and – if found – will insert the
contents of this file inuxmon-net . Of course you can use absolute or relative
paths with the file name argument. Note that relative paths also will be searched in
adm, etc and the root directory. Therefore if you e.g. use the statement

include etc/uxmon.include

Big Sister 18

this will normally forceuxmon to include the fileuxmon.include in theetc
directory. However, if e.g. a fileadm/etc/uxmon.include exists, this one is
included in preference toetc/uxmon.include !

The file name argument of an include statement may contain variable references
like in

include uxmon.$HOST

Here$HOSTwill be replaced by the hostname of the system hostinguxmon. Cur-
rently only$HOSTcontains a defined value. Environment variables arenot visible
to theinclude statement.

2.2.3 Display server configuration

The main server configuration file isadm/bb-display.cfg . With very few
exceptions every display related configuration appears somewhere in this file. The
suggested structure of the file is:

• Options

• System names and groups

• Web pages

Each of these sections is composed of a number ofstatements. Statements always
start on a new line and are prefixed by a “%” character. Most statements take argu-
ments, so a valid statement looks like e.g.:

%Autojoin new NEW

(Autojoin with first argumentnew and second argumentNEW)

See the section onbb-display.cfg in the CONFIG documentation for a com-
plete list of known statements. Note that the above structure is mandatory.

Big Sister 19

The options section

In the options section you specify various not necessarily display related parame-
ters. Statements belonging to the options section include

Option – specify (boolean) options

Autoconn – switch on the autoconn feature for specific hosts

Pager – set the pager program used by Big Brother agents

A valid options section might look like

Set some options:
- do not forget grouping information on restart
- only update files in www/html when status
text or status color changes
- no logging in www/logs
%Option +KeepGroups -ImmediateHTML -BBLog

Turn autoconn feature on for host myagent
%Autoconn myagent

Pager program for Big Brother clients is
BBs bb-page.sh
%Pager /usr/local/lib/bb/bin/bb-page.sh

Using the autoconn feature The%Autoconn statement indicates tobbd (not
bsmon!) for which hosts it should enable the autoconn feature. Whenever an agent
connects tobbd for transmission of status informationbbd looks up the system
hosting the agent in the list of autoconn hosts. If it is listed therebbd automatically
generates agreen status message for this hostsconn (connection) status. When
the agent does not connect to the server for more than 15 minutes the status is
automatically changed tored .

Big Sister 20

The system names and groups section

Big Sister uses groups at various places. You will meet them when defining what
systems’ status will appear on which web page (see section 2.2.3) as well as when
setting up your alarming rules (see section 2.2.4).

In the system names and groups section ofbb-display.cfg you specify dis-
played system and group names and define the group hierarchy. The most impor-
tant statement you will want to remember is theGroups statement. All the lines
between aGroup statement and the next valid statement will be treated as group
and/or name specifications. Each line is of the form

hostname(Displayed Host Name) GROUP1 ... GROUPN

or

groupname(Displayed Group Name) GROUP1 ... GROUPN

where hostname/groupname is the name of a host (group resp.) and the string in
parenthesis is the description of the host or group shown on web pages.GROUP1
through GROUPNare names of groups hostname/groupname is a member of.
Groups are created when they are first referenced so you can use an arbitrary name
for both thegroupname orGROUPNarguments. Groups may themselves be mem-
bers of other groups. It is a good idea to avoid circular groups though.

Time for an example: Assumingwashington , paris and london are three
systems monitored by Big Sister the grouping statement

%Groups
washington(Our server in Washington) USA SERVER
paris(Our server in Paris) EUROPE SERVER
london(Our server in London) EUROPE SERVER

EUROPE(Good old Europe) WORLD
USA(The United States) WORLD

WORLD(all the continents) UNIVERSE
SERVER(all our servers) UNIVERSE

Big Sister 21

UNIVERSE

WORLD
all the continents

SERVER
all our servers

EUROPE
Good old Europe

USA
The United States

washington
Our server in Washington

Our server in London
london

Our server in Paris
paris

Figure 2.3: Group hierarchy example

Big Sister 22

will create a group calledUSA containing only the systemwashington , the
groupEUROPEcontaining the systemsparis and london , the groupWORLD
containing the groupsEUROPEandUSA, the groupSERVERcontaining all three
systems, and finally the groupUNIVERSEcontaining the groupsSERVERand
WORLD(see figure 2.3).

Automatically joined groups Big Sister can automatically add a host to special
groups at the time the first status message for the host comes in. Via theAutojoin
statement you declare which groups Big Sister will use for this purpose. Basically
there are three available autojoin features:

• %Autojoin new GROUPNAME– hosts joining in that are not member
of any group yet (semantics: “they are new” / “not defined yet”) will join
the group namedGROUPNAME. This is especially useful for detecting hosts
which are already monitored by an agent but which are not correctly config-
ured on server side.

• %Autojoin all_hosts GROUPNAME – any host (but not groups!) be-
comes member of the group namedGROUPNAME.

• %Autojoin all GROUPNAME – any host or group becomes member of
the group namedGROUPNAME.

The web pages section

The web pages section defines what web pages are generated as well as what they
look like. A few statements (like theskin and Logskin statements) are of a
global nature while others (liketitle , table , etc.) are only applicable in con-
junction with aPage statement.

Mainly you will define the basic look of your web pages via theskin and
Logskin statements, then you describe the pages you would like to be gener-
ated and their contents via thePage statement and its “children” (title , refto ,
table , ref , itemref , image). Each page description starts with aPage state-
ment as e.g.

%Page top The_main_page

Big Sister 23

(create a web page calledtop.html with title “The main page”) Note that the title
must not contain spaces. To bypass this limitation underscores will be replaced by
spaces.

A single Page statement will not create much more than an empty page. The
lines immediately following it should define some contents. Most important in this
respect is thetable statement. Followed by one or more groups it will insert
one table per group containing the hosts or groups in the respective group and their
status. So e.g. (the group names and members are taken from the example in section
2.2.3)

%Page top The_main_page
%table EUROPE USA

will create a page with filenametop.html containing two tables, one containing
all the members of the groupEUROPE(namelyparis and london), the other
containing all the members of the group USA.

Note thattable will only list the members of a group at the next hierarchy level,
so e.g.

%table WORLD

will list EUROPEandUSA, not washington , london , paris . You can control
how deeptable digs by prefixing the group name(s) with a “+” sign as in

%table +WORLD

This will list the group members two levels belowWORLD(washington ,
london , paris). Multiple “+” signs will make table go deeper in the hier-
archy.

All the other statements (except for theimage statement documented in section
2.3.3) will not create contents themselves. Instead they modify the behaviour of the
following table statement.

• %title Any_title – specifies the tables title. if you use the special
word none instead of a title tables are created without any title, the spe-
cial word auto makestable use the display name (see section 2.2.3) of

Big Sister 24

the groups the respective tables are created from. The latter is the suggested
variation.

• %itemref directory – if directory does not equal the special
word none all the status lights in the following tables will refer to the file
host.check.html in the sub directorydirectory of the www direc-
tory. So by clicking on a status light the browser will open the respective file.
Commonly useditemref statements are

%itemref html

(point to where Big Sister stores its html-ized status messages) or

%itemref logs

(point to where Big Sister stores its ASCII text version status messages). The
latter only works if theBBLog option is enabled (see section 2.2.3).

• %refto url – whenever host names or group names appear in a table Big
Sister will create a hypertext link pointing tourl#hostname . Usuallyurl
will be the name of a page created viabb-display.cfg and is used to
point from tables showing consolidated status information to more detailed
tables. Big Sister will automatically create the necessary labels each time it
inserts a table in a web page. Of course you are free to use URLs pointing
somewhere outside the set of auto generated pages. Note thatrefto always
applies to all rows of a table. Lets make an example:

%Page top Top_Page
%refto detailed
%table WORLD

%Page detailed Host_Details
%itemref html
%refto http://oursite.com/serverlist.html
%table EUROPE USA

This will create two web pagestop.html anddetailed.html . On the
first page only a single table containing rows for “Good old Europe” and
“The United States” is shown. These two labels are linked to the second page
where there are two tables, one listing all the hosts in the groupEUROPE, one
listing the hosts in the groupUSA. The labels in this two tables are linked to
a manually created descriptive page...serverlist.html .

Big Sister 25

refto accepts a few special pseudo-URLs:refto none will suppress
hypertext linking,refto self will create links pointing to the same page.

• refto name url – therefto statement explained above always takes
effect on a whole table. However sometimes it is necessary to link individual
hosts or group to individual pages. Another flavour of therefto statement
supports exactly this. Via e.g.

%refto washington /servers/washington.html

you force the following table statements to link each appearing
washington label to the page /servers/washington.html#washington. No
matter which comes first an individualrefto always overrides a global one,
so that e.g.

%Page top Top_Page
%refto EUROPE europe
%refto USA usa
%refto all_the_rest
%table WORLD

%Page europe Europe
%refto none
%table EUROPE

%Page usa USA
%refto none
%table USA

will work correctly, thus creating three pages, one being an index page show-
ing consolidated status for Europe and USA pointing to the respective pages
listing the servers in Europe and USA.

Individual refto entries are kept acrossPage statements. If you need to
limit scope of entries you can use the special pseudo-URLclear as in this
example:

%Page top Top_Page
%refto EUROPE europe
%refto USA usa
%refto servers

Big Sister 26

%table WORLD
%refto clear
%table WORLD

This will create a table with links to the Europe and USA pages, then another
table with links to theservers page.

Skins

While Big Sister strictly limits the contents of web pages to a few elements (ac-
tually tables and image maps) the way web pages look is configurable via the so-
called skin mechanism. A skin defines the layout of pages – to give some examples
skins decide if tables get borders, if the background is white or yellow, if legends
are at the top or at the bottom of a page or not present at all, if status lights are
round and blinking or rather triangular and static, and so on.

Most skins do not define the whole palette of possible features. Instead, there is
a basic skin (thedefault skin) and various skins modifying only a few lay-
out elements – e.g. thewhite_bg skin will change the background to white,
the static_lamps skin will replace the blinking status lights by non-blinking
lights, etc. A whole set of such skins is called a skin set.

Skins appear in conjunction with theLogskin andskin statement.Logskin is
used to specify the skin set Big Sister uses when creating the web pages for each
checks detailed status whileskin sets the default skin for everything else.

Example:

%Logskin white_bg
%skin static_lamps,structured_bg,frames

This will make Big Sister create the HTML log pages with white background in
place of the default one and all the other web pages with static status lights, a
textured background and using HTML frames.

Big Sister 27

Note that the default skin is automatically part of any skin set, there is no need for
explicitly listing it.

Some of the available skins are:

title_in_table – make table titles part of the table

white_bg – set pages’ background to white in place of the default colored back-
ground

structured_bg – another alternate background

static_lamps – display non-blinking status lights

frames – frame optimized skin

bigbro13 – Big Brother 1.3 like look

alt_contentsicons– especially ugly status lights in contents frame

Frames

Have you already read section 2.2.3 concentrating on skins? Pages displayed in
frames are in fact just a special way of layouting pages, therefore you need only
use a frames-enabled skin set (e.g. one including the skinframe) and you get a
layout using frames.

Anyway, there is one little problem. It is not sufficient to create all the status pages,
additionally an index page defining the frame set as well as the non-status frames
are needed. This is the realm of theFrameset statement:

%Frameset index top Monitored_by_Big_Sister

in bb-display.cfg will create an index page calledindex.html , the initial
page displayed when entering index.html istop.html and the title of the frame
set is “Monitored by Big Sister”.

The statement will only work if the specified skin is frame-aware. If the skin de-
fines a menu frame only the pages defined up to theFrameset statement will be
respected.

Big Sister 28

2.2.4 Configuring alarming

Big Sister implements alarming in a server based manner. The agent is responsible
for determining if a system or service is working correctly (“green”), if it is critical
(“yellow”) or it has failed (“red”) – other stati do exist but are not relevant to
alarming. This status is noticed by the alarming module of the server. Depending on
the configuration fileadm/bb_event_generator.cfg the server generates
alarms on status changes.

The alarming configuration mainly consists of a set of rules. Each rule consists of
a pattern matched against all status change, a definition of dependencies and a de-
scription of the action to be taken when an alarm is raised. The first two elements
describe under what circumstances an alarm is to be raised while the last one de-
scribes how actually the alarm is raised. Using this simple approach a few things
can easily be configured either for individual checks, for individual hosts or for
whole groups:

• wait for a defined time period before reporting an alarm and do not report an
alarm if the problem goes away within this period

• regularly send reminders telling the administrator that a problem persists
until the problem goes away

• do not repeatedly send alarms for a multiply occurring problem

• behave different depending on time of day or day of week (e.g. postpone
alarms raised during the night to the early morning)

• suppress alarms depending on what status other systems/services are in (e.g.
do not report that a system is unreachable when Big Sister already knows
that the whole network the system is connected to is down)

The main disadvantage of the existing rule based alarming configuration is that it
is very hard to find a simple way to explain how it works. Unfortunately you will
just have to read the whole section and hopefully understand the configuration at
the end.

Big Sister 29

Server

List of pending
alarms:
- ...
- ...
- ...

List of
alarming rules:
- ...
- ...
- ...

Status
Change

Agent

Send Alarm

Figure 2.4: Status Changes result in Alarms

Rules

An alarming rule in thebb_event_generator file always starts with a pattern
followed by a description describing what actions should be taken if the pattern
matches. Every time a status change is noticed the alarm generator does two things:

• go through the pending alarms and check if the status change has some effect
on one of them

• if the status change is not related with one of the pending alarms: go through
the list of rules, select all the matching rules and raise an alarm depending
on their descriptive part

Usually each line in the configuration file represents one rule. Of course like in
most Big Sister configuration files empty lines and lines starting with a ’#’ char-
acter are treated as comments and are therefore simply ignored. A rule may span
multiple lines: Lines terminated with a ’\ ’ character are joined with their following
line.

Big Sister 30

Patterns – “when to do things”

The most simple form of a pattern is ahost.check pattern. A rule

foo.cpu mail=nobody

(where foo.cpu is the pattern andmail=nobody is the description) for in-
stance matches only status changes for the hostfoo and thecpu check. The above
rule tells Big Sister to forward alarms forfoo.cpu to the usernobody .

Now let’s assume you do not want to list each individual system and check in the
rule file. The Alarm Generator accepts one single wildcard –* – matching any
check or any host:

*.cpu mail=nobody

extends the above rule to be effective for anycpu check of any host while

foo.* mail=nobody

matches any status change reported for hostfoo and finally

. mail=nobody

matches any status change for any host.

Of course you may want to address a group of hosts - haven’t you spent hours
setting up groups after reading section 2.2.3? Exactly these groups are also visible
to the alarm generator. By prefixing a host name with a ’@’ character you point Big
Sister to match a group rather than a single host so that a rule like

@USA.* mail=nobody

for instance applies to any status change reported for any system being member of
the groupUSA.

So far so good. Sometimes it is very useful to be able to make alarming behave
different depending on when a status change is detected - maybe you just refuse to
be woken up by your beeper during the night or you want get alarms via another

Big Sister 31

medium during working hours. For this purpose the patterns can contain so-called
pre-conditions. In the rule

@USA.*{weekday Sat,Sun} mail=pikett

the stuff in parenthesis is a pre-condition. The rule will only match status changes
for any system being member of the groupUSAreported during the weekend. An-
other useful precondition is thedaytime condition. This rule

.{daytime 17:00-07:00} down=never

for instance will suppress (down=never) any status change reported between
5pm and 7am. Of course conditions can be combined usingand andor , so

.{daytime 17:00-07:00 or weekday Sat,Sun} down=never

will suppress any status change reported between 5pm and 7am or during week-
end.

Description - “what to do”

Associated with each pattern there is a description in the form of a bunch of defini-
tions. This set of definitions describes what actually will be done if a status change
matching the pattern occurs. The rules will be processed in the order they appear
in the configuration file and if multiple patterns match all the definitions will cu-
mulate. Definitions appearing later in the file will overwrite definitions appearing
earlier, e.g.:

. mail=alarm@nowhere.org delay=5
*.cpu delay=100

If a status change formyhost.conn is reported then only the first pattern will
match resulting in a description of:

mail=alarm@nowhere.org delay=5

Big Sister 32

while if a status change formyhost.cpu is reported both patterns will match and
the resulting description would look like:

mail=alarm@nowhere.org delay=100

thus themail definition will be taken from the first rule while thedelay defini-
tion of the second matching rule will replace the concurring definition in the first
rule.

It is a good idea to place more general rules near the start of the configuration
file and more specific rules near the end. E.g. a rule associated with the pattern
. is working like default settings since it will match every single status change.
Consider

. mail=alarm delay=5 down=yellow up=green prio=5

Placed at the very start of the configuration it will initialize the settings formail ,
delay , down, up andprio . Later rules may re-set one of these settings by at the
same time inheriting all the other settings.

It is time to specify the meanings of all these settings. As you already discovered
settings resemble variable definitions. Now some of these variables have special
meanings:

prio a number between 0 (completely unimportant) and 100 (extremely critical)
describing the importance of the alarm. The priority settings can be used in
pre-conditions (see 2.2.4 and are otherwise passed through to the alarming
methods. E.g. for alarms sent via E-Mail the priority will only appear in the
message text and does not have any influence on how the alarm is treated.

down is a status color. Status colors equal or below this color are considered a
failure, thus an alarm is raised if a status change occurs from a color “above”
this color. E.g.

down=yellow

will make Big Sister raise an alarm if a status changes from green to yellow
or green to red but not if a status changes from green to purple.

up works similiar todown but defines when a status will be considered to go up.
By defaultup is the same as the next “higher” color ofdown. Sometimes it
might be useful to re-define this. Consider

Big Sister 33

down=yellow up=green

This will raise an alarm on status change from e.g. green to red. If the status
goes up to purple (aka. no information) the alarm will not be cleared. It will
only be cleared as soon as we get a green (aka. everything’s ok).

delay is a time in minutes. Whenever an alarm is raised it first goes into a pool
of alarms just about to be raised. It stays in this pool for thedelay time. If
during this time the alarm condition clears (service up) the alarm is silently
dropped. If an alarm is still pending after thedelay time the alarm is finally
sent to the administrator.

keep is also a time in minutes. After an alarm condition clears the alarm is kept
active for thekeep time period. Only after this time the administrator will
get an “alarm cleared” message and the alarm will go in the pool of old
alarms. Do not ask me what this is useful for.

norepeat after an alarm is cleared it goes into the pool of old (remembered) alarms
and stays there for thenorepeat time period. As long as an alarm is ei-
ther pending, active or remembered no new alarm for the same host/status is
raised. The meaning of “norepeat” therefore is: Do not send an alarm again
for the same condition for this delay. Thenorepeat period starts when the
alarm israised. Therefore it is of course possible that thenorepeat delay
is already over when an alarm gets cleared and therefore the respective alarm
is immediately thrown out of the pool of remembered alarms.

mail names the recipient (mail address or pager number or whatever depending on
the value of thepager variable) alarms are sent to.

pager tells Big Sister which program it should use for sending out alarms. The
default is “notify” which is a pager program included with Big Sister. It is
not a bad idea to just keep this default.

repeat is a time period in minutes. If an alarm stays active for some time every
repeat minutes Big Sister will send a reminder message to the recipient of
the original alarm message. It is suggested to use this feature only for really
important alarms since most administrators will probably just get annoyed
when continuously reminded of the same failures.Note: This is not related
to norepeat in any way.

repeatprio is the priority (see above) of reminder messages.

trap If trap is set Big Sister will sent out an SNMP trap on each alarm raise/clear
(see also 2.3.7). The value oftrap is of the form

Big Sister 34

trap=community@host

You will find the Big Sister MIB (if you do not know what a MIB is you
do not need one) as well as format file for HP Openview in thecontrib
directory of the source distribution.

postpone is a time period in minutes. After an alarm becomes active Big Sister
waits forpostpone minutes before it really sends out a message. If during
this period the alarm is cleared it is silently dropped without a message. This
is nearly the same asdelay .

postpone_to is exactly the same aspostpone . But the value is not exactly a time
period in minutes - it is an absolute time of day, e.g.

postpone_to=06:00

will postpone alarms to 6 am.Note that the time is in 24h notation so 8pm
for instance is 20:00,not 08:00pm.

Once you have understand alarming to this point there are a few challenges left
for the advanced user: conditional alarming (check setting), using settings like
priorities in pre-conditions and a few more. These are beyond the scope of this
document and you will find them documented in theCONFIGfile.

I did not understand anything at all

You arenot alone. For all those who did not understand the consequences of the
last few sections this section will contain a few more or less useful examples.

2.3 Advanced Configuration

2.3.1 Server security

The Big Sister server accepts client connection and therefore has some potential to
be exploited by a hacker. Overall the server is considered rather secure since

Big Sister 35

• it is written in Perl and therefore does not suffer from buffer overrun prob-
lems

• it uses a simple protocol and therefore validity checking on incoming re-
quests is rather trivial

• the available functionality is rather limitted

Anyway nobody will guarantee that there is absolutely no way of hacking Big
Sister! A nasty user can at least annoy you by generating masses of false alarms,
faking wrong system status, injecting wrong history data, etc.

Server Access

First of all you should limit access to the Big Sister server to those who really need
access. You will need to configure youradm/permissions file in a reasonable
way. The defaultpermissions file

host .* => +all

makes Big Sister listen to everyone in the world speaking the right language! So
you should start stripping this down a little.

As you probably already guessed each line in thepermissions file contains a
rule defining which clients are authorized to do special things. Every line contains
the string=>. On the left side of this separator you will find a pattern telling Big
Sister to what clients this rule applies, on the right side you will find a list of
features this clients are allowed access to.

A client is identified in two ways:

• by the host it is running on

• by the user it is authenticating as

The second identification is not implemented yet - this makes less secure but at the
same time things get really easy.

Big Sister 36

There are only a few ways how to identify a host: Either you identify it by its name
or by its IP address. To make rules more powerful you can use wildcards in both
cases. For instance

host 192.168..* => +all

will permit access to every host in the 192.168 network, while

host .*\.microsoft\.com => +all

will do the same for every host in the microsoft.com domain.Note that the strings
are perl regular expressions which are slightly different from any other wildcarded
patterns!

To clarify if you are trying to match a name or an IP address it is always a good
idea to useip or name instead ofhost :

ip 192\.168\..* => +all
name .*\.microsoft\.com => +all

There are a few more recognized keywords apart fromhost , ip andname. E.g.
the server supports per user or per group access permissions - nevertheless there is
currently no client supporting user authentication so it is sufficient for now to know
the rules applying to hosts.

It is time now to understand what the expression at the right hand side of=> does
mean: mainly it describes what server functionality the respective clients are al-
lowed (“+”) or disallowed (“-”) to use. Apart fromall (which means acess to all
functions) Big Sister understands a few more function groups:

none access to nothing at all. Note that this works as a kind of “no operation”,
especially+none doesnot mean “access to none of the services”!

authenticate accept user authentication

status accept status information

grouping accept grouping information (see 2.3.2

Big Sister 37

page accept page request (compatibility with Big Brother only)

archiving accept history archiving requests.

alarm_acking accept alarm acknowledging. The alarm web interface makes use
of this function

perf accept performance (trend) data

From most agents you will probably acceptstatus , grouping andperf re-
quests, while you should additionally acceptalarm_acking from the Big Sister
server. If your agents are located in the networks 192.168.1 and 131.156, and your
Big Sister server’s name isbsdisplay your configuration might therefore look
something like:

host .* => -all
ip 192\.168\.1\..* => +status +grouping +perf
ip 131\.156\..* => +status +grouping +perf
name bsdisplay => +alarm_acking
ip 127\.0\.0\.1 => +status +grouping +perf +alarm_acking

The first line sets default permissions to “no access”. The second through third line
adds status, grouping and performance data access for agents in the listed networks.
The last two lines add alarm acknowledging access for agents running on the server.
In the 4th line we assume the server is also located in one of the networks listed in
the second and third line and therefore already got access to status, grouping and
performance data collection.

As you can see in the example above Big Sister will always go through the whole
file and respects all the rules in the order they appear.

Therefore in the example above clients outside of 192.168.1 and 131.156 networks
will get no access at all since only the very first rule (telling Big Sister to refuse
access) applies.

Note: Host level authentication relies on the IP address of the systems connecting
to the server only. Big Sister does not know what type of program is connecting.
Therefore anyone having access to a respective system automatically can do to

Big Sister 38

Big Sister what an agent may do (e.g. by simply connecting to the server via the
telnet command and typing in client/server commands). Big Sister is meant to
work in environments where users usually are not expected to be interested enough
in fighting against system administration to fake agent connections.

2.3.2 Dynamic grouping

2.3.3 Graphical status displays

2.3.4 Monitor modules

2.3.5 Performance data collection

2.3.6 Interlinking multiple Big Sister servers

2.3.7 SNMP support

2.3.8 SLA / Availability Reporting

Installation

The reporting module is included in the main distribution now. It is installed as part
of

make install

or with

make install-reporting

Overall operation

There are two approaches to understanding reporting. First of all,
there are two fundamental commands calledreport_read and

Big Sister 39

report_consolidate . report_read reads in a specified file with
status information or dependency rules for one specific day and stores the
results invar/reportdb/day-yyyy-mm-dd.statuslog . Multiple runs
of report_read – most probably you will at least read in the display.history
and some dependency definitions - may incrementally update the same file in
var/reportdb. One of the functions ofreport_read is the “Cumulator” which
builds var/reportdb/*cumu* files out of the statuslog files by applying service
hours / holidays definitions to the status information. Usually you will have
multiple cumu files since you are interested in seeing statistics for multiple service
levels. The files generated byreport_read are actually of minor interest to you
– they just serve as a kind of cache in order to reduce time spend in daily statistics
operation. Another effect of this caching is that you do not need storing status
information (display history) for the whole time period you are interested in.

report_consolidate then will go through all the cumu files in a specified
time period, sum up time spent in specific status and create report files

var/reportdb/day-yyyy-mm-dd.statistics.cumuclass.name

for each cumulated file (textttreport_read) and each defined time period. These files
are what you actually want to get.

Setting it up

Theory sounds rather complex, doesn’t it? Let’s go ahead to the real world then.
In order to simplify the use of the reporting module an additional command
report_day has been added. Usually you will just forget aboutreport_read
andreport_consolidate and just usereport_day which tries to do a sen-
sible mixture ofreport_read s andreport_consolidate s itself. As its
name impliesreport_day is meant to be run on a daily basis. It will build statis-
tics based on the following files:

var/display.history.*
Big Sister’s status history

adm/reporting/servicehours
defining when systems are

Big Sister 40

expected to be working

adm/reporting/holidays
defining holidays (aka. time
periods when systems are not
expected to be in service)

adm/reporting/cumulators
defining which service levels
should be reported (linking
servicehours and holidays
to status information)

adm/reporting/override
is meant to store manually
maintained status information
overriding display.history

adm/reporting/dependencies
telling us which services
should be watched and how
they depend on status
information in display.history

adm/reporting/statistics
defining which time periods
should be consolidated and
what exactly we would like
to see in the resulting
report

This sound more exhaustive than it actually is – do not be afraid.

Best is to start with the simple things: servicehours and holidays. These files are
rather self explaning – in servicehours you can define “in service” hours for each
day of the week, while in holidays you can exclude whole days from service time.
Note that the first column in each of these files contain a “class” specifier. This
allows to define multiple levels of service – e.g. some systems might to be expected
to run 24 hours 7 days a week while others are only expected to run from 8:00 till

Big Sister 41

17:00 on Monday through Friday. Define classes for all these service levels.

Servicehours and holidays will not be effective on their own. The rules actually
linking service levels with status information are listed in the cumulators file. In
this file you actually define your service levels based on servicehours and holidays.
Each rule looks like

levelname = service:class > holidays:class

Do not mind if you do not really understand what exactly “>” means. “levelname”
is a symbolic name you can freely choose - at the very end you will get report files
carrying “levelname” in their names.

It is time now for the more complex things: dependencies. In a real world you are
usually not interested in seeing statistics for simple things like myserver.conn or
myserver.smtp – in the SMTP case for instance you probably have multiple re-
dundant mail servers increasing the overall mail service availability. So the mail
service is available if any of your mail servers is up and running. In the dependen-
cies file you tell the reporting modules which dependencies apply to your systems.
The above rule would maybe look like:

mailservice = history:myserver1.smtp | history:myserver2.smtp

telling that mailservice is up if at least one of myserver1.smtp and myserver2.smtp
is up. Note the leading “history:”. Every information holder’s name in the reporting
tool is preceeded by a prefix like e.g.:

history: – display.history information

service: – servicehours information

comp: – dependencies

holidays: – holidays information

override: – override information

To show a more complex example: let’s assume that the mail servers above depend
on DNS to work correctly. So you define a DNS rule (let’s assume you run two
redundant DNS servers dns1 and dns2):

Big Sister 42

dns = history:dns1.dns | history:dns2.dns

Now you can use the result of the dns rule to make your mailservice rule more
realistic:

mailservice = comp:dns & \
(history:myserver1.smtp | history:myserver2.smtp)

do not be fooled by the fact that the rule is now put on two lines – this is just for
readability (the at the end of line one tells the reporting module the rule will be
continued on the next line). Note that “dns” is in fact “comp:dns” – dependencies
get automatically prefixed with “comp:”.

Note that the resulting statistics will only contain services defined via the depen-
dencies mechanism. Also, dependencies with names starting with “_” are not ap-
pearing in the final output file – you can use such names as “internal variables”.

Of course some times your monitor will fail and report nonsense (e.g. because your
agent or server got cut off). In this case you need a means for manually correcting
such mistakes. This is done via the “override” mechanism. E.g. add the following
line to the override file:

mailservice,28.6.01 12:00,29.6.01 09:00,green,I know it worked

saying that mailservice was completely ok from June 28 12:00 till June 29 09:00.
This line on its own does not yet change the statistics result. You have to set up your
dependencies accordingly. The full mailservice rule should then look something
like

mailservice = comp:dns & \
(history:myserver1.smtp | history:myserver2.smtp) \
> override:mailservice

The “>” (override) operator tells us to prefer the expression on the right side of “>”
to the expression on the left side for the whole time period(s) the expression on
the right side is defined. In other words: whenever override:mailservice is defined

Big Sister 43

the whole expression basing on history status is ignored and overriden by over-
ride:mailservice – actually this is probably what you guessed a long time before.

There is only one thing left you need to setup before we can get the first statistics:
the statistics file. In this file you specify what “things” should be reported and
which time periods the statistics should cover. As for now we can go along with
the default file. It does report

Down = time (secs) a service was red
N/A = time (secs) a service was purple
Up = time (secs) a service was yellow

or green
Planned Outage = time (secs) a service was white
Service Hours = time (secs) a service should have

been in service (according to the
cumulators file)

Down % = Down/Service Hours
Up % = Up/Service Hours
Availability = The service’s availability

Note again that only dependencies (names starting with comp:) will appear in the
final output. So as long as you do not define dependencies you will get no results.
A dependency can of course be as simple as

comp:myrouter = history:myrouter.conn

Have you got the idea?

Running the reporting tool

The easiest way to run the reporting tool is via thereport_day wrapper, e.g.:

bin/report_day

report_day is meant to be run every day and will by default read in status his-
tory / servicehours / holidays for the last two days and dependencies / cumulators /
overrides for the last 10 days.

Big Sister 44

When running bin/textttreport_day for the first time you might want to compute
statistics for a longer time back, do it with e.g.:

bin/report_day -h 30 -c 30

(-h: read history / servicehours / holidays 30 days back, -c: read the rest of the files
also 30 days back)

You will see that this will take some time becausereport_day will compute
each individual day separately. This is very inefficient for long time periods since
the whole reporting system is optimized for daily (incremental) use.

Where are the results

You will get a bunch of files in var/reportdb. The most interesting files are
day*.statistics.class.period. E.g. a file

day-2001-06-28.statistics.level1.oneweek

contains the statistic for the time from June 22 to June 28 2001 and the service
level level1.

Note that though you defined oneweek to consolidate status for 7 days the reporting
tool will create a statistics file for every day containing the last 7 days. This is
intentionally setup like that. Probably you are only interested in one of these files
per week though.

And what if I use savelogs/archivelogs

The reporting tool is compatible with savelogs/archivelogs (see bsadmin). Actu-
ally the display.history reader will not only read in display.history but also dis-
play.history.* files. If you archive your logs outside of var/display.history.* this
will even drastically improve the efficiency of the daily incremental report genera-
tion steps since it is actually sufficient to have display history files available for 3
days back only!

Big Sister 45

Some of the file formats look very funny

Some of the file formats are actually CSV (well, more or less – do *not* try to
use commas in cells!). That’s why they look rather unfriendly to a vi user. The
file formats where defined with the idea in mind that someone might use some
spreadsheet or database application for editing or importing/exporting the files.
CSV is one of the formats most applications understand.

I need more than this – what shall I do

The reporting tool should be modular enough to add support for more log files or
config files. For instance it would be nice to have some sort of database for the
“overrides” instead of a flat table or at least some web based frontend. Also one
could think about importing raw data from other monitoring systems.

One first thing we attempt to improve is the presentation of the results. E.g. we
could set up some nice RRD graphs allowing us to compare current time periods
with past time periods. Some means of inserting current statistics results on image
maps would also be nice.

Please feel free to send suggestions or patches to the developers via

http://bigsister.graeff.com/

	Installation
	Pre-requisits
	Big Sister Components
	Paths
	Installing Big Sister
	Installation from source

	Installing Windows binary
	Post-installation tasks
	Installing Perl modules
	Installing RRDTool
	Installing CGIs
	Web Server

	Configuration
	First steps
	Basic Configuration
	Daemon startup
	Agent configuration
	Display server configuration
	Configuring alarming

	Advanced Configuration
	Server security
	Dynamic grouping
	Graphical status displays
	Monitor modules
	Performance data collection
	Interlinking multiple Big Sister servers
	SNMP support
	SLA / Availability Reporting

